

Modeling Multi-Label Action Dependencies for Temporal Action Localization

Praveen Tirupattur, Kevin Duarte, Yogesh Rawat, Mubarak Shah

Center for Research in Computer Vision (CRCV)

University of Central Florida

Problem

- Temporal Action Localization
 - $\circ \quad \text{Inputs} \to \text{Untrimmed Videos}$
 - $\circ \quad \text{Task} \to \text{Find action boundaries}$

- Real World Video
 - Multiple complex actions
 - Inherent relation between action classes

Proposed Approach

- Motivation Model relationship between action classes to improve localization
- Relationship between actions
 - Co-occurrence (Overlapping activities)
 - Temporal Ordering
- Examples
 - Co-occurrence Run and Pole Vault

Proposed Approach

- Motivation Model relationship between action classes to improve localization
- Relationship between actions
 - Co-occurrence (Overlapping activities)
 - Temporal Ordering
- Examples
 - Co-occurrence Run and Pole Vault
 - Temporal Ordering Dribble precedes Dunk

Related Works:

- 1. Differentiable grammars for videos, AAAI 2020
- 2. Inferring temporal compositions of actions using probabilistic automata, CVPR 2020

• Feature Extraction

+ : Addition

Concatenation

7

MLAD Layer

- Co-occurrence Dependency
 - For each timestep T, learn class-wise relation
 - T attention maps of shape C x C
- Temporal Dependency
 - For each class C, learn relation across time
 - T attention maps of shape C x C
- Weighted average of learned features

$$g_{t,c} = \alpha f'_{t,c} + (1 - \alpha) f''_{t,c}.$$

Multi-label Metrics

- Existing Multi-label metrics
 - Hamming Loss (HL)
 - Zero-One Loss (ZL)
 - Ranking Loss (RL)
 - Coverage-Loss (CE)
 - Jaccard Score (JS)
 - Label Ranking Average Precision (LRAP)
- Existing evaluation metric treat each timestep as an individual sample.
- Each class within a timestep is evaluated independently.

Proposed Metric

$$Precision(c) = \frac{N_{\text{correct}}(c)}{N_{\text{predict}}(c)} \qquad Recall(c) = \frac{N_{\text{correct}}(c)}{N_{\text{gt}}(c)}$$

$$Precision(c_i|c_j) = \frac{N_{\text{correct}}(c_i|c_j)}{N_{\text{predict}}(c_i|c_j)} \qquad Recall(c_i|c_j) = \frac{N_{\text{correct}}(c_i|c_j)}{N_{\text{gt}}(c_i|c_j)}$$

$$Precision(c_i|c_j, \tau) = \frac{N_{\text{correct}}(c_i|c_j, \tau)}{N_{\text{predict}}(c_i|c_j, \tau)} \qquad Recall(c_i|c_j, \tau) = \frac{N_{\text{correct}}(c_i|c_j, \tau)}{N_{\text{gt}}(c_i|c_j, \tau)}$$

Proposed Metric

• Results on MultiTHUMOS

Action-Conditional Metrics ↑

2	au = 0			$\tau = 20$				
	\mathbf{P}_{AC}	\mathbf{R}_{AC}	$F1_{AC}$	\mathbf{mAP}_{AC}	\mathbf{P}_{AC}	\mathbf{R}_{AC}	$F1_{AC}$	mAP _{AC}
I3D	33.63	15.23	18.65	32.58	37.88	18.01	21.96	35.53
CF	36.73	21.39	23.71	35.00	41.95	23.91	27.22	38.42
TGM [33]	34.59	17.21	20.14	36.90	39.27	20.13	23.86	40.18
Our	39.22	28.33	29.37	40.15	42.89	30.27	32.18	43.76

Experiments

• Qualitative Results - fmAP Scores

Method	MultiTHUMOS	Charades
I3D Baseline* [33]	29.7	17.2
CF Baseline	42.6	14.8
Super-events* [34]	36.4	19.4
TGMs* [33]	44.3	21.5
TGMs + SE* [33]	46.4	22.3
TGMs + DG* [32]	48.2	22.9
Our Approach	51.5	23.7

Ablations

	MultiTHUMOS	Charades
L = 1	48.55	20.48
L = 3	50.30	23.15
L = 5	51.52	23.74

Features	MultiTHUMOS	Charades
RGB	42.24	18.40
Flow	48.77	20.10
Late Fusion	49.58	22.93
Early Fusion	51.52	23.74

Eval. Length	Fixed Tr. Length	Var. Tr. Length
T = 32	49.90	50.20
T = 64	51.14	51.01
T = 96	51.31	51.31
T = 128	50.59	51.52

	W/O Initial Loss	With Initial Loss
f-mAP	49.96	51.52

	Fixed Alpha	Learned Alpha
f-mAP	50.95	51.52

Analysis

• Effect of CB and TB

	MultiTHUMOS	Charades
No CB, No TB	42.60	14.80
Only CB	44.98	20.3
Only TB	48.03	21.1
TB + CB	51.52	23.5

Interpretability of MLAD Layer

• Visualization from CB

Interpretability of MLAD Layer

• Visualization from TB

Qualitative Results

Modeling Multi-Label Action Dependencies for Temporal Action Localization

Praveen Tirupattur, Kevin Duarte, Yogesh Rawat, Mubarak Shah

Center for Research in Computer Vision (CRCV)

University of Central Florida

Code available at https://github.com/ptirupat/MLAD

