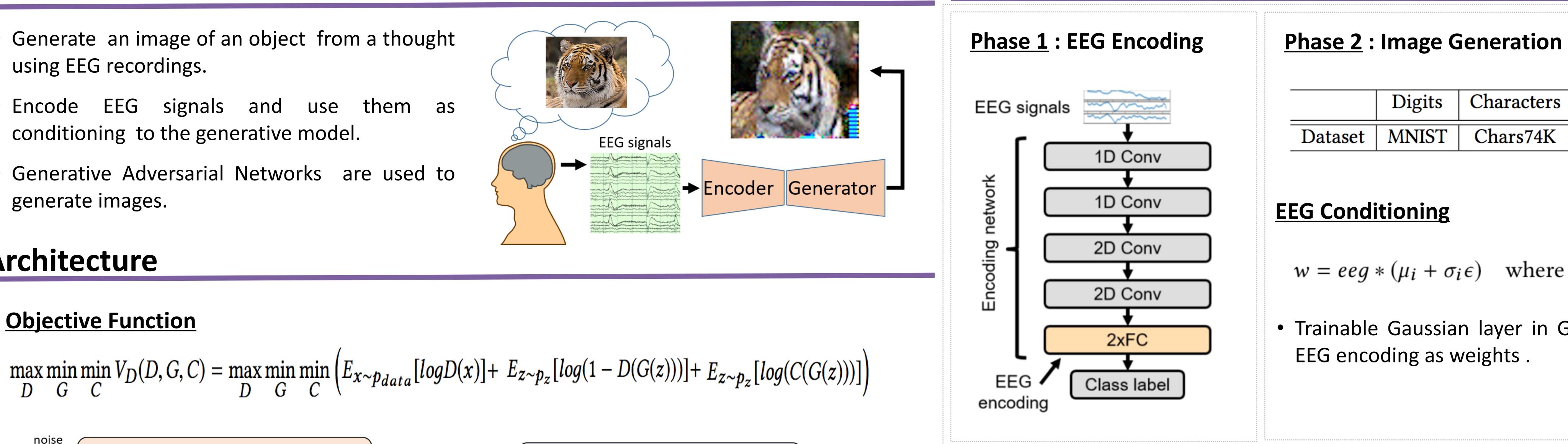

## Aim

- Generate an image of an object from a thought using EEG recordings.
- Encode EEG them as signals and use conditioning to the generative model.
- Generative Adversarial Networks are used to generate images.

### Architecture

### **Objective Function**






### **Generated Images**



# **ThoughtViz: Visualizing Human Thoughts Using Generative Adversarial Network**

Praveen Tirupattur, Yogesh Singh Rawat, Concetto Spampinato, Mubarak Shah



### Approach

### Results

| EG Classi        | ficatior         | <u>)</u> |           |           | Inception Se                           | core           |                    |
|------------------|------------------|----------|-----------|-----------|----------------------------------------|----------------|--------------------|
|                  | Disite           | Cl       |           | Objects   | Method                                 |                | Inception Scor     |
|                  | Digits           |          | aracters  | Objects   | AC-GAN [2                              | 1]             | 4.93               |
| Accuracy         | 72.88%           | 7        | 1.18%     | 72.95%    | AC-GAN [21] (1                         | -              | 3.10               |
|                  |                  |          |           |           | Our Approa                             | ch             | 5.43               |
| Image Clas       | <u>ssificati</u> | on       | 1         |           | Object Class                           | Mean           | Standard Deviation |
|                  |                  | Digits   | Character | s Objects | Apple (n07739125)                      | 5.477          | 0.065              |
| AC-GAN [21]      |                  | 74.10%   | 52.57%    | 70.36%    | Car (n02958343)                        | 5.445          | 0.072              |
| (EEG Condition   | ing)             |          |           |           | Dog (n02084071)                        | 5.463          | 0.073              |
| AC-GAN [21]      |                  | 82.06%   | 79.95%    | 62.44%    | Gold (n03445326)                       | 5.484          | 0.096              |
| (1-hot Condition | ning)            |          |           |           | Mobile (n02992529)                     | 5.511          | 0.068              |
| Brain2Image [14] |                  | 28.32%   | 17.76%    | 12.05%    | Rose (n12620196)<br>Scooter(n03791053) | 5.470<br>5.485 | 0.088              |
| Our approach     | -                | 99.27%   | 92.23%    | 97.12%    | Tiger (n02129604)                      | 5.485          | 0.072              |
| ~ ~              | I                |          |           |           | Wallet(n04548362)                      | 5.439          | 0.067              |
|                  |                  |          |           |           | Watch (n04555897)                      | 5.448          | 0.046              |
| Reference        | C                |          |           |           | All                                    | 5.439          | 0.064              |

| EEG Classi       | ficatior | <u>)</u> |           |           | Inception Se                           | <u>core</u>    |                    |
|------------------|----------|----------|-----------|-----------|----------------------------------------|----------------|--------------------|
|                  | Disita   | Class    |           | Ohiosta   | Method                                 |                | Inception Score    |
|                  | Digits   | Cha      | aracters  | Objects   | AC-GAN [2                              | 1]             | 4.93               |
| Accuracy         | 72.88%   | 7        | 1.18%     | 72.95%    | AC-GAN [21] (1                         | -              | 3.10               |
|                  |          |          |           |           | Our Approa                             | ch             | 5.43               |
| Image Clas       |          |          | Character | Objects   | Object Class                           | Mean           | Standard Deviation |
|                  |          | Digits   | Character | s Objects | Apple (n07739125)                      | 5.477          | 0.065              |
| AC-GAN [21]      |          | 74.10%   | 52.57%    | 70.36%    | Car (n02958343)                        | 5.445          | 0.072              |
| (EEG Condition   | ing)     |          |           |           | Dog (n02084071)                        | 5.463          | 0.073              |
| AC-GAN [21]      |          | 82.06%   | 79.95%    | 62.44%    | Gold (n03445326)                       | 5.484          | 0.096              |
| (1-hot Condition | ning)    |          |           |           | Mobile (n02992529)                     | 5.511          | 0.068              |
| Brain2Image [14] |          | 28.32%   | 17.76%    | 12.05%    | Rose (n12620196)<br>Scooter(n03791053) | 5.470<br>5.485 | 0.088              |
| Our approach     | -        | 99.27%   | 92.23%    | 97.12%    | Tiger (n02129604)                      | 5.502          | 0.072              |
|                  | I        |          | 1         |           | Wallet(n04548362)                      | 5.439          | 0.067              |
|                  |          |          |           |           | Watch (n04555897)                      | 5.448          | 0.046              |
| Reference        | S        |          |           |           | All                                    | 5.439          | 0.064              |

Mubarak Shah. 2017. Brain2Image: Converting Brain Signals into Images. In Proceedings of the 2017 ACM on Multimedia Conference. ACM, 1809–1817.

[21] Augustus Odena, Christopher Olah, and Jonathon Shlens. 2017. Conditional image synthesis with auxiliary classifier gans. ICML (2017).



|     | Digits | Characters | Objects  |
|-----|--------|------------|----------|
| set | MNIST  | Chars74K   | ImageNet |

UNIVERSITÀ

| $eg * (\mu_i + \sigma_i \epsilon)$ | where | $\epsilon \sim \mathcal{N}(0,1)$ |
|------------------------------------|-------|----------------------------------|
|------------------------------------|-------|----------------------------------|

• Trainable Gaussian layer in Generator using

MULTIMEDIA